Tag Archives: disease surveillance systems

“In our fight against cancer—we must be unwilling to postpone—for the loved ones we’ve lost and the ones we can save.”

Ethical Concepts of the New Public Health

I am currently working on two essays that I needed to submit with my fellowship application, but the event in Paris made me stop for a few minutes and reflect on the scorching reminder that terrorism has no religion, a brand of madness, not faith. Such event amplified the urgency to stress the significance of New Public Health that carries a high potential for healthy less aggressive societies.  The main principles of living together in healthy communities were summarized by Laaser et al. (2002) as four ethical concepts of the New Public Health essential to violence reduction – equity, participation, subsidiarity, and sustainability. The coupling of current economic, demographic, and social issues will play a role in guiding future policy revisions. While my fellowship of interest is in epidemiology and infectious diseases, increased understanding of the interrelated dimensions of deracination or forced migration using the modern concept of public health is warranted. It is critical to understand the determinants of violence: the type of stigmatization; the process of urbanization; religious, ethnic, and racial prejudices; women’s status; the level of education; employment status; socialization of the family; availability of firearms;  alcohol and drug consumption;  and poverty.


Laaser, U., Donev, D., Bjegovic, V., & Sarolli, Y. (2002). Public health and peace. Croatian medical journal, 43(2), 107-113.

A Promise to a Dying Brother

When I was inducted into the Honor Society in winter 2013, I thought that being on top of my batch will be enough to get me through my journey as a Public Health Ph.D. candidate. Recruiting a dissertation chair is the most challenging so far, especially getting a response from them. What if I do not get a dissertation chair who will be a good match with my dissertation topic? Can I submit my premise and finish my dissertation to another university? A night before my youngest brother passed away; I was on the phone with him. He told me that he is too tired, and I responded that it is okay to let go. He asked me to promise him to go back to school and take on a graduate degree to make a difference. “Promise me that at some point to be involved in a research project that could make a difference to individuals diagnosed with pancreatic cancer.” He passed away in 2007, a few weeks before his 40th birthday, and three months before his only daughter’s first birthday.

Focusing on the impact of cigarette smoking as a factor that promotes pancreatic cancer rather than initiates it will amplify the importance of behavioral change, and enhance the quality of life. The outcome of pancreatic cancer remains dismal, even with treatment combinations of surgery, radiotherapy and chemotherapy with an estimated annual economic burden of $4.9 billion annually (Pandol, Apte, Wilson, Gukovskaya, and Edderkaoui, 2012). Advances in patient management and understanding the biology of pancreatic cancer has taken substantial progress over the years. Herman, Schulick, Hruban and Goggins (2011) found that screening first-degree relatives of individuals with family members affected by pancreatic cancer can identify non-invasive precursors of the disease. In this 2011 study shows the gradual rise in the incidence and number of deaths caused by pancreatic tumors, even with the decline in incidence and mortality of other common cancers. Furthermore, Vincent et al. found that despite developments in detection and management of pancreatic cancer, only about 4% of patients will live five years after diagnosis. Moreover, Vincent et al. (2011) found that present surgical resectioning offers the only chance of cure and improve the survival rate for those with malignant disease localized to the pancreas. Statistical analysis in 2012 study shows 80–85% of patients with advanced unresectable disease responds poorly to most chemotherapeutic agents. Therefore, it is warranted to have continued understanding of the biological mechanisms contributory to the development and progression of pancreatic tumors. On the other hand, Klein et al. (2004) emphasized the significance of quantification of the risk of individuals with a family history of pancreatic cancer as a rational basis for cancer risk screening and counseling. In a prospective registry-based approach of this 2004 study, the risk of these individuals showed an increased risk of developing the disease. Klein et al. (2004) performed standardized incidence ratios and compared the number of incident pancreatic cancers observed with those expected using Surveillance, Epidemiology and End Results (SEER) rates. It was quantified in this registry-based study the pancreatic cancer risk in kindreds with a family member who was diagnosed with the disease, supporting the hypothesis of increased risk in association with family history. While Blackford et al. (2009) failed to identify the signature tobacco-related mutation in cigarette smokers that could have strong implication to the development of pancreatic cancer; this 2009 study found the nonspecific DNA damage caused by tobacco carcinogens. Furthermore, the combined causality of non-tobacco-related mutagenic risk factors such as inherited predisposition to cancer may share mutagenic properties with the tobacco mutagens active in pancreatic tissues (Ding et al., 2008; Prokopczyk et al., 2002). The types and patterns of these mutations provide insight into the mechanisms by which cigarette smoking causes pancreatic cancer (Blackford et al., 2009). Porta et al. (2009) and Blackford et al. (2009) suggested that smoking enhances the risk for pancreatic cancer through mechanisms other than genetic mutation. The development of pancreatic cancer may have a non-significant association to pipe smoking and smokeless tobacco use, but in a large collaborative pooled analysis of non-cigarette tobacco use in 11 studies within the International Pancreatic Cancer Case-Control Consortium (PanC4) found that cigar smoking is associated with an excess risk of the disease (Bertuccio et al., 2011). Cigarette smoking was found to be an established risk factors— both exposure to environmental tobacco smoke (ETS), and active cigarette smoking (Vrieling et al., 2010). Over 40,000 individuals are diagnosed with pancreatic cancer, and less than 5% of patients diagnosed has a survival rate of five years. The component of the smoke of cigarettes that produced in the body as a metabolite of nicotine and the most abundant carcinogens in tobacco smoke is 4-(methyl nitrosamine)-1-(3-pyridyl)-1-butanone (NNK). Vary widely in nicotine content and carcinogenic nicotine metabolites, cigarettes, cigars, and other tobacco products—nicotine reaches the lungs and is quickly absorbed into the bloodstream during smoking. A cigar containing as many as 20 grams of tobacco can have nicotine between 5.9 and 335.2 mg per gram of tobacco (Henningfield, Fant, Radzius, & Frost, 1999). Prokopczyk et al. (2002) noted that the nicotine levels in pancreatic juice in smokers is seven times higher than non-smokers. Blackford et al. (2009) concluded that smokers diagnosed with pancreatic carcinomas harbors more mutations than the non-smoker, therefore, doubles the risk, accounting for 20 to 25% of pancreatic cancers.

Pandol et al. (2012) stated that the pro-carcinogenic effects of smoking on the pancreas are inadequately studied, confirming that tobacco smoking is the strongest avoidable risk and the major environmental factor for pancreatic cancer. Pandol et al. provided valuable insights into the pathogenesis of pancreatic cancer, particularly in the initiation and progression of the disease. Determining the mechanisms underlying the effect of smoking compounds on fibrosis and inflammation will improve our limited knowledge of pancreatic biology. Pancreatic cancer can be classified as genetic, environmental, or both; as well as a disease caused by inherited DNA mutation or mutation by chance. While advances in Genomics gives the promise to early pancreatic cancer detection through better understanding of pancreatic biology, it is paramount to embrace the significance of lifestyle habits that can be modified to evidence-based healthier concepts that translates to reduced cancer risk. Applying lessons learned from the outcome of my proposed study, and existing body of knowledge will prevent the emergence of pancreatic cancer, reduce cancer risk and advance population health. Early behavioral change and interventions will improve the survival rate and quality of life during the time course of pancreatic cancer progression.


Bayraktar, S., Bayraktar, U. D., & Rocha-Lima, C. M. (2010). Recent developments in palliative chemotherapy for locally advanced and metastatic pancreas cancer. World journal of gastroenterology: WJG16(6), 673.

Bertuccio, P., La Vecchia, C., Silverman, D. T., Petersen, G. M., Bracci, P. M., Negri, E., … & Boffetta, P. (2011). Cigar and pipe smoking, smokeless tobacco use and pancreatic cancer: an analysis from the International Pancreatic Cancer Case-Control Consortium (PanC4). Annals of Oncology, mdq613.

Blackford, A., Parmigiani, G., Kensler, T. W., Wolfgang, C., Jones, S., Zhang, X., … & Hruban, R. H. (2009). Genetic mutations associated with cigarette smoking in pancreatic cancer. Cancer research69(8), 3681-3688.

Bosetti, C., Lucenteforte, E., Silverman, D. T., Petersen, G., Bracci, P. M., Ji, B. T., … & La Vecchia, C. (2012). Cigarette smoking and pancreatic cancer: an analysis from the International Pancreatic Cancer Case-Control Consortium (Panc4). Annals of oncology23(7), 1880-1888.

Bouvier, A. M., David, M., Jooste, V., Chauvenet, M., Lepage, C., & Faivre, J. (2010). Rising incidence of pancreatic cancer in France. Pancreas39(8), 1243-1246.

Breslow, N. E., Day, N. E., & Davis, W. (1980). The analysis of case-control studies. International Agency for Research on Cancer.

Chowdhury, P., Chang, L. W., & Rayford, P. L. (1993). Tissue distribution of [3H]-nicotine in rats. Biomedical and environmental sciences: BES6(1), 59-64.

Chowdhury, P., Doi, R., Tangoku, A., & Rayford, P. L. (1995). Structural and functional changes of rat exocrine pancreas exposed to nicotine. International journal of pancreatology, 18(3), 257-264.

Colby, S. M., Clark, M. A., Rogers, M. L., Ramsey, S., Graham, A. L., Boergers, J., … & Abrams, D. B. (2012). Development and reliability of the lifetime interview on smoking trajectories. Nicotine & Tobacco Research14(3), 290-298.

Colditz, G. A., Wolin, K. Y., & Gehlert, S. (2012). Applying what we know to accelerate cancer prevention. Science translational medicine4(127), 127rv4-127rv4.

DerSimonian, R., & Laird, N. (1986). Meta-analysis in clinical trials. Controlled clinical trials7(3), 177-188.

Ding, L., Getz, G., Wheeler, D. A., Mardis, E. R., McLellan, M. D., Cibulskis, K., … & Sawyer, C. S. (2008). Somatic mutations affect key pathways in lung adenocarcinoma. Nature, 455(7216), 1069-1075. Chicago.

Edderkaoui, M., Park, C., Lee, I., Nitsche, C., Gerloff, A., Grippo, P. J., … & Gukovskaya, A. S. (2011, November). Novel model of pancreatic neoplastic lesions induced by smoking compound NNK. In Pancreas (Vol. 40, No. 8, pp. 1321-1321). 530 WALNUT ST, PHILADELPHIA, PA 19106-3621 USA: LIPPINCOTT WILLIAMS & WILKINS.

Feuer, E. J., & Wun, L. M. DEVCAN: probability of developing or dying of cancer software, version 4.1.[internet]. Bethesda (MD): National Cancer Institute (NCI); 1999 [accessed 2002 May 28].[1 p].

Gould, G. S., Watt, K., Cadet-James, Y., & Clough, A. R. (2015). Using the risk behaviour diagnosis scale to understand Australian Aboriginal smoking—a cross-sectional validation survey in regional New South Wales. Preventive Medicine Reports2, 4-9.

Greenland, S. (1987). Quantitative methods in the review of epidemiologic literature. Epidemiologic reviews9(1), 1-30.

Henningfield, J. E., Fant, R. V., Radzius, A., & Frost, S. (1999). Nicotine concentration, smoke pH and whole tobacco aqueous pH of some cigar brands and types popular in the United States. Nicotine & Tobacco Research1(2), 163-168.

Hoffmann, D., Hoffmann, I., & El-Bayoumy, K. (2001). The less harmful cigarette: a controversial issue. A tribute to Ernst L. Wynder. Chemical research in toxicology14(7), 767-790.

Hruban, R. H., Iacobuzio-Donahue, C., Wilentz, R. E., Goggins, M., & Kern, S. E. (2000). Molecular pathology of pancreatic cancer. Cancer journal (Sudbury, Mass.)7(4), 251-258.

Institute for Health Metrics and Evaluation. (2015). US County Profile: Dallas County, Texas. 2301 Fifth Ave., Suite 600 Seattle, WA 98121 USA.

Jiao, L., Mitrou, P. N., Reedy, J., Graubard, B. I., Hollenbeck, A. R., Schatzkin, A., & Stolzenberg-Solomon, R. (2009). A combined healthy lifestyle score and risk of pancreatic cancer in a large cohort study. Archives of internal medicine, 169(8), 764-770.

Kadam, P., & Bhalerao, S. (2010). Sample size calculation. International journal of Ayurveda research1(1), 55.

Kirby, A., Gebski, V., & Keech, A. C. (2002). Determining the sample size in a clinical trial. Medical journal of Australia177(5), 256-257.

Klein, A. P., Brune, K. A., Petersen, G. M., Goggins, M., Tersmette, A. C., Offerhaus, G. J. A., … & Hruban, R. H. (2004). Prospective risk of pancreatic cancer in familial pancreatic cancer kindreds. Cancer Research, 64(7), 2634-2638. Chicago

Janghorban, R., Roudsari, R. L., & Taghipour, A. (2014). Skype interviewing: the new generation of online synchronous interview in qualitative research. International journal of qualitative studies on health and well-being9.

Labilles, U. (2015). Reevaluating the Impact of Cigarette Smoking on Pancreatic Cancer (Unpublished, Advanced Quantitative Reasoning and Analysis (RSCH – 8250H – 3), 2015 Summer Qtr. Wk11Assgn3LabillesU) Walden University, Minneapolis.

Larsson, S. C., Permert, J., Håkansson, N., Näslund, I., Bergkvist, L., & Wolk, A. (2005). Overall obesity, abdominal adiposity, diabetes and cigarette smoking in relation to the risk of pancreatic cancer in two Swedish population-based cohorts. British journal of cancer93(11), 1310-1315.

Lau, P. P., Dubick, M. A., Gloria, S. M., Morrill, P. R., & Geokas, M. C. (1990). Dynamic changes of pancreatic structure and function in rats treated chronically with nicotine. Toxicology and applied pharmacology, 104(3), 457-465.

Le Houezec, J. (2003). Role of nicotine pharmacokinetics in nicotine addiction and nicotine replacement therapy: a review. The International Journal of Tuberculosis and Lung Disease7(9), 811-819.

Lowenfels, A. B., & Maisonneuve, P. (2003). Environmental factors and risk of pancreatic cancer. Pancreatology3(1), 1-8.

Lynch, S. M., & Rebbeck, T. R. (2013). Bridging the gap between biologic, individual, and macroenvironmental factors in cancer: a multilevel approach. Cancer Epidemiology Biomarkers & Prevention22(4), 485-495.

Lynch, S. M., Vrieling, A., Lubin, J. H., Kraft, P., Mendelsohn, J. B., Hartge, P., … & Stolzenberg-Solomon, R. Z. (2009). Cigarette smoking and pancreatic cancer: a pooled analysis from the pancreatic cancer cohort consortium. American journal of epidemiology170(4), 403-413.

Miller, T. Q. (1997). Statistical methods for describing temporal order in longitudinal research. Journal of clinical epidemiology50(10), 1155-1168.

NHIS – Adult Tobacco Use – Smoking Status Recodes. (n.d.). Retrieved from http://www.cdc.gov/nchs/nhis/tobacco/tobacco_recodes.htm

Pancreatic Expression Database. (n.d.). Retrieved from http://pancreasexpression.org/

Pandol, S. J., Apte, M. V., Wilson, J. S., Gukovskaya, A. S., & Edderkaoui, M. (2012). The burning question: why is smoking a risk factor for pancreatic cancer? Pancreatology12(4), 344-349.

Philip, P. A. (2008). Targeted therapies for pancreatic cancer. Gastrointestinal cancer research: GCR2(4 Suppl 2), S16.

Prokopczyk, B., Hoffmann, D., Bologna, M., Cunningham, A. J., Trushin, N., Akerkar, S., … & El-Bayoumy, K. (2002). Identification of tobacco-derived compounds in human pancreatic juice. Chemical research in toxicology, 15(5), 677-685. Chicago.

Porta, M., Crous-Bou, M., Wark, P. A., Vineis, P., Real, F. X., Malats, N., & Kampman, E. (2009). Cigarette smoking and K-ras mutations in pancreas, lung and colorectal adenocarcinomas: etiopathogenic similarities, differences and paradoxes. Mutation Research/Reviews in Mutation Research682(2), 83-93.

Prospective Ascertainment for Late Effects among Cancer … (n.d.). Retrieved from http://www.mskcc.org/cancer-care/trial/12-143

Raimondi, S., Maisonneuve, P., Löhr, J. M., & Lowenfels, A. B. (2007). Early onset pancreatic cancer: evidence of a major role for smoking and genetic factors. Cancer Epidemiology Biomarkers & Prevention16(9), 1894-1897.

Schottenfeld, D., & Fraumeni Jr, J. F. (1982). Cancer epidemiology and prevention. Eastbourne, UK; WB Saunders Co.

Silverman, D. T., Dunn, J. A., Hoover, R. N., Schiffiman, M., Lillemoe, K. D., Schoenberg, J. B., … & Pottern, L. M. (1994). Cigarette Smoking and Pancreas Cancer: a Case—Control Study Based on Direct Interviews. Journal of the National Cancer Institute86(20), 1510-1516.

Smith-Warner, S. A., Spiegelman, D., Ritz, J., Albanes, D., Beeson, W. L., Bernstein, L., … & Hunter, D. J. (2006). Methods for Pooling Results of Epidemiologic Studies the Pooling Project of Prospective Studies of Diet and Cancer. American journal of epidemiology163(11), 1053-1064.

Special Section: Pancreatic Cancer. (n.d.). Retrieved from http://www.cancer.org/acs/groups/content/@research/documents/document/acspc-0388

Thomas, J. K., Kim, M. S., Balakrishnan, L., Nanjappa, V., Raju, R., Marimuthu, A., … & Pandey, A. (2014). Pancreatic cancer database: an integrative resource for pancreatic cancer. Cancer biology & therapy15(8), 963-967.

Validation of risk assessment scales and predictors of … (n.d.). Retrieved from http://europepmc.org/articles/PMC4054635

Vincent, A., Herman, J., Schulick, R., Hruban, R. H., & Goggins, M. (2011). Pancreatic cancer. The Lancet, 378(9791), 607-620. Chicago

Vrieling, A., Bueno‐de‐Mesquita, H. B., Boshuizen, H. C., Michaud, D. S., Severinsen, M. T., Overvad, K., … & Riboli, E. (2010). Cigarette smoking, environmental tobacco smoke exposure and pancreatic cancer risk in the European Prospective Investigation into Cancer and Nutrition. International journal of cancer126(10), 2394-2403.

Wen, K. Y., & Gustafson, D. H. (2004). Needs assessment for cancer patients and their families. Health and quality of life outcomes2(1), 11.

Wilson, L. S., & Lightwood, J. M. (1999). Pancreatic cancer: total costs and utilization of health services. Journal of surgical oncology71(3), 171-181.

Witte, K. (1996). Predicting risk behaviors: Development and validation of a diagnostic scale. Journal of health communication1(4), 317-342.

Witte, K., & Allen, M. (2000). A meta-analysis of fear appeals: Implications for effective public health campaigns. Health Education & Behavior27(5), 591-615.

Wittel, U. A., Pandey, K. K., Andrianifahanana, M., Johansson, S. L., Cullen, D. M., Akhter, M. P., … & Batra, S. K. (2006). Chronic pancreatic inflammation induced by environmental tobacco smoke inhalation in rats. The American journal of gastroenterology101(1), 148-159.

A Challenge to Public Health Surveillance Interoperability and Clinical Research

The obstacles that impact interoperability of the disease surveillance systems starts with the issue of balance between the public interest in the collection of information and the privacy rights. In theory, properly utilized, surveillance is a fundamental government activity, indispensable in nature (Gostin & Gostin, 2000). The legal complications brought about by the Fourth Amendment prohibition against unreasonable searches and seizures, triggered the social impetus behind HIPAA and the HHS Report. The Fourth Amendment is a constitutional protection against wrongful enforcement of the law on access to private medical records. These offers insight into the growth and development of non-Fourth Amendment protections for medical records privacy, and examines later actions that appear to restrict or undercut these potential medical record protections. The shared goals of both public health surveillance and the protection of health information privacy will encourage individuals to fully utilize health services and cooperate with health agencies. The key to protecting the well-being of the community is the optimum balance between public health activities and privacy protection. This balance is challenged by the enactment and enforcement of current legislation such as the Health Insurance Portability and Accountability Act’s Privacy (HIPAA). The way public health exception of HIPAA Rule was drafted resulted to confusion and put this balance in jeopardy, as well as recognized reluctance to provide information to state and local public health agencies. Wilson (2009) stated that the exception ambiguously defines the role of public health authorities in maintaining the privacy of personally identifiable health information. Incertitude about privacy can be equipoised by initiatives by state and federal policy makers such as the report “Confidentiality of Individually-Identifiable Health Information” issued by the Department of Health and Human Services (HHS).  This report reflected a legitimate interpretation and representation of the best aspects of constitutional and judicial protections of medical records privacy using current innovative technology in health information and communication.

State, local, and tribal public health authorities shares the privacy challenges that are inherent in data sharing. Wilson (2009) stated that, in the process of promulgating the Privacy Rule, HHS recognized the need to inscribe an exception for public health purposes in order to allow authorities at all levels of government to continue to collect, analyze, and use health information that would otherwise be unavailable without prior patient consent. State courts and policy makers have produced some protection for individuals’ medical histories which are characterized more by their diversity and conflicting standards than by the quality of protection. Unfortunately, state laws offer little additional support for medical records protection from law enforcement intrusion, thereby it is paramount for continued collaboration between public health professionals, health leaders and policy makers to focus on needed amendments to protect the interest of both the public, patients and researchers which will then bridge the divide on the interpretation of the law. It is critical to acknowledge that challenge of law- and policy-makers in finding common ground between individual privacy expectations and the communal health authorities’ needs for identifiable health data. The dissemination and use of identifiable health data for public health purposes are typically supported by the public, but it relies on how the government and other entities maintain appropriate privacy and security protections in acquiring the data. It is warranted for the continued improvement on the level of protection afforded to the public and patients by state laws governing medical records privacy. Moral justifications should be considered in establishing firm, consistent set of rules governing law enforcement’s use and exchange of private medical records and data needed in clinical research. The obstacles that forestall data-sharing practices should be assessed and remedied within each jurisdiction. Legal interpretations should be openly discussed to properly develop and implement model policy to strengthen disease surveillance, and increase the efficiency of data-sharing practices between researchers and public health authorities at all levels.


Aarestrup, F. M., Brown, E. W., Detter, C., Gerner-Smidt, P., Gilmour, M. W., Harmsen, D., … & Schlundt, J. (2012). Integrating genome-based informatics to modernize global disease monitoring, information sharing, and response. Emerging infectious diseases18(11), e1.

Act, A. (1996). Health insurance portability and accountability act of 1996.Public Law104, 191.

Bernstein, A. B., & Sweeney, M. H. (2012). Public health surveillance data: legal, policy, ethical, regulatory, and practical issues. MMWR Surveill Summ, 30-4.

Carroll, L. N., Au, A. P., Detwiler, L. T., Fu, T. C., Painter, I. S., & Abernethy, N. F. (2014). Visualization and analytics tools for infectious disease epidemiology: A systematic review. Journal of biomedical informatics.

Chan, M., Kazatchkine, M., Lob-Levyt, J., Obaid, T., Schweizer, J., Sidibe, M., … & Yamada, T. (2010). Meeting the demand for results and accountability: a call for action on health data from eight global health agencies. PLoS Med7(1), e1000223.

Chowdhary, S., & Srivastava, A. (2013). Cloud Computing: A Key to Effective & Efficient Disease Surveillance System. In Int. Conf. on Advances in Signal Processing and Communication. ACEEE (Lucknow).

El Emam, K., Hu, J., Mercer, J., Peyton, L., Kantarcioglu, M., Malin, B., … & Earle, C. (2011). A secure protocol for protecting the identity of providers when disclosing data for disease surveillance. Journal of the American Medical Informatics Association18(3), 212-217.

Gostin, L. O., & Gostin, L. O. (2000). Public health law: power, duty, restraint (Vol. 3). Univ of California Press.

Gostin, L. O., Hodge, J. G., & Marks, L. (2002). The Nationalization of Health Information Privacy Protections. Tort & Insurance Law Journal, 1113-1138.

Hodge Jr, J. G., Torrey Kaufman, J. D., & Jaques, C. (2012). Legal Issues Concerning Identifiable Health Data Sharing Between State/Local Public Health Authorities and Tribal Epidemiology Centers in Selected US Jurisdictions.

Kulynych, J., & Korn, D. (2003). The New HIPAA (Health Insurance Portability and Accountability Act of 1996) Medical Privacy Rule Help or Hindrance for Clinical Research? Circulation108(8), 912-914.

Labilles, U. (2014). Obstacles of Disease Surveillance Interoperability: A Challenge to Public Health. (Unpublished, PUBH-8270-2. Health Informatics and Surveillance. 2014 Spring Qtr. WK11Disc) Walden University, Minneapolis.

Lenert, L., & Sundwall, D. N. (2012). Public health surveillance and meaningful use regulations: a crisis of opportunity. American journal of public health, 102(3), e1-e7.

Office for Civil Rights, H. H. S. (2002). Standards for privacy of individually identifiable health information. Final rule. Federal Register67(157), 53181.

Van Der Goes Jr, P. H. (1999). Opportunity Lost: Why and How to Improve the HHS-Proposed Legislation Governing Law Enforcement Access to Medical Records. University of Pennsylvania law review, 1009-1067.