Asides

Bridging Cancer Epidemiology and Social Evolution

Research Design 2Modern epidemiology is a direct result of the paradigm shift from a population-based (upstream) to a downstream (individual) approach. The impact of modern epidemiology such as ‘molecular’ and ‘genetic’ epidemiology (Loomis & Wing, 1990; Diez-Roux, 1998) requires an explanatory power that mostly dependent upon the advances in technology and information systems. Moreover, before estimating the economic effect of a specific intervention before it is implemented, nor assess the economic and/or quality-of-life value of an ongoing or anticipated intervention (Rothermel, 2013); it is critical to recognize not only the significance of sophisticated technologies that go beyond the established genome, proteome, and gene expression platforms, but also new techniques of study design and data analysis (Pearce, 1996; Verma, Khoury & Ioannidis, 2013). Given the remarkable progress in the last decade in advanced technology and new methods for biologic measurements, the reductionist approach of modern epidemiology often ignored the significant causes of disease. Pearce (1996) argue that epidemiology must reintegrate itself into public health and must rediscover the population perspective. However, while the new paradigm could produce a lifestyle approach to social policy, the cumulative outcome of research in cancer epidemiology could equate positive implications to population health.

The key figures in the new epidemiologic model not only acknowledges the development of new techniques of study design and data analysis but also recognize the need for a multidisciplinary approach (social, biologic, statistical), and specifying the population group as the unit of study (Susser, 1985). While occupational carcinogens can be controlled with some difficulty through regulatory measures (Pearce, 1996), it is essential to acknowledge the fundamental problem of tobacco use, not by its consumption but in its production. Pearch (1996) focused on some of these fundamental changes in epidemiology over the past few decades and considered the concepts of causality involved, as well as their ideological and practical consequences. While smoking cessation could be the probable social implication, it is important to stress the epidemiologic value of a study on the apparent correlation between gender and age, modification effect of tobacco use among individuals with pancreatic cancer (PC) and cancer types with a shared-gene association (CTSG-A). The outcome of a risk factor epidemiologic study in individual terms could uplift precision medicine to meet the challenges in tailoring medical interventions based on patient’s biological profile, genetic and epigenetic traits, giving a better understanding of the environment, genetic, biodemographic interactions (EGBIs).

Embraced by both biomedical and social determinist frameworks, the interlinking of the traditional epidemiologic level of intervention (upstream or distal) and the modern epidemiologic level of intervention (downstream or proximal) put public health in the conundrum of the proximal-distal divide. Signal the importance of the argument of the 2008 study of Krieger in replacing the terms proximal and distal from the public health lexicon, supports the recommendation of Wemrell et al. (2016) on the critical need for open interdisciplinary debates on the contribution of social theory to the epidemiological inquiry. While coping with the demand of the 21st-century, global health could still be viewed and approached within the mindset of traditional epidemiology, and the purview of molecular and cancer epidemiology.

The discovery of tobacco smoking as a cause of lung cancer in the early 1950s gave the field of epidemiology its recognition (Pearce, 1996), shifting the epidemiologic paradigm in the object of study in the mid-20th century on the role of multiple causes. Establishing the correlation of age, gender a modifiable risk factor (smoking) with PC and CTSG-A requires the use of early and current epidemiologic theories, and contemporary mainstream epidemiologic concept coalescing to a United Paradigm of Cancer Causation (UPCC). The complex, integrative approach of UPCC supports the views of Loomis, and Wing (1990), Pearce (1996), and McEwen and Getz (2013) in embracing the new epidemiologic paradigm congruent to the advances in cancer genome sequencing. Theorizing the pathopoiesis mechanism of smoking, inherited genes, and association of gender and age in the etiopathogenesis of PC/CTSG-A warrants exploration of its causal footprints, conjoining both biomedical and lifestyle (Krieger, 2011).

Follow-up and future research on the role of molecular epidemiology in emphasizing individual susceptibility to PC will assess the relative contribution of modifiable risk factors to non-modifiable genetic factors. In this premise, the etiopathogenesis of the disease could be explored from the bottom up. Bridging cancer epidemiology and social evolution will be dependent upon the incorporation of the strength of the social network and social contagion theory. The testable assumption of the social network theory as its strength states that the social structure of the network itself be primarily responsible for determining individual behavior and attitudes by shaping the flow of resources which determines access to opportunities and constraints on behavior (Berkman et al., 2000). Why choose if a single theory cannot make a change? Incorporating these ideas in addition to the composite and underpinnings of UPCC could springboard a priori argument on the role of social networks in the spread of an intervention such as smoking cessation, or amplifying the promotion of the significance of early screening to improve mortality and morbidity.

While the causal nature of peer effects could be associated with tobacco use; the social contagion theory of Christakis and Fowler (2013) set an argument on human social networks exhibiting a “three degrees of separation.” Such association could support the assumption of spreading the interpersonal influence that acknowledges the significance of early screening, and the promise of a novel therapeutic approach. Like the widely discussed classic paper of Travers and Milgram (1969) on ‘six degrees of separation,’ the three degrees of separation or the three degrees of separation rule (Christakis & Fowler, 2009) agreed on the premise that telegraph phrases are meant to be evocative, and not definitive. For example, the role of interpersonal influence in spreading novel ideas such as advances in early screening to achieve a more significant therapeutic outcome. The preponderance of the evidence that points to the added significance of a passive-broadcast viral messaging to create social contagion warrants the recognition of the approach. Taking into account factors such as the promise of the outcome of a research study in the quality of life, social and economic incentives could expand the social network and amplify social support needed by individuals with PC or any deadly diseases. According to Kroenke et al. (2013), effective social support interventions need to evolve beyond social-emotional interventions and need to account for disease severity and treatment status.

References

Berkman, L. F., Glass, T., Brissette, I., & Seeman, T. E. (2000). From social integration to health: Durkheim in the new millennium. Social Science & Medicine51(6), 843-857. https://doi.org/10.1016/S0277-9536(00)00065-4

Christakis, N.A & Fowler, J.H. (2009). Connected: The Surprising Power of Our Social Networks and How They Shape Our Lives. (First ed.). New York: Little, Brown, and Company.

Christakis, N. A., & Fowler, J. H. (2013). Social contagion theory: examining dynamic social networks and human behavior. Statistics in medicine32(4), 556-577. doi: 10.1002/sim.5408

Diez-Roux, A. V. (1998). On genes, individuals, society, and epidemiology. American Journal of Epidemiology148(11), 1027-1032. http://dx.doi.org/10.1093/oxfordjournals.aje.a009578

Krieger, N. (2008). Proximal, Distal, and the Politics of Causation: What’s Level Got to Do With It?  American Journal of Public Health (AJPH), 98(2). http://dx.doi.org/10.2105/AJPH.2007.111278

Krieger, N. (2011). Epidemiology and the people’s health: theory and context (Vol. 213). New York: Oxford University Press.

Kroenke, C. H., Kwan, M. L., Neugut, A. I., Ergas, I. J., Wright, J. D., Caan, B. J., … & Kushi, L. H. (2013). Social networks, social support mechanisms, and quality of life after breast cancer diagnosis. Breast cancer research and treatment139(2), 515-527. doi:  10.1007/s10549-013-2477-2

Labilles, U. (2015a). Reevaluating the Impact of Cigarette Smoking on Pancreatic Cancer. Unpublished manuscript, College of Health Sciences, Public Health, Epidemiology, Walden University, Minneapolis.

Labilles, U. (2015b, September 27). A Promise to a Dying Brother [Web log post]. Retrieved from https://onenationsecho.com/2015/09/27/a-promised-to-a-dying-brother/.

Labilles, U. (2015c). Prospectus: Tobacco Use and Family Cancer History in the Pathopoiesis of Pancreatic Cancer. Unpublished manuscript, College of Health Sciences, Public Health, Epidemiology, Walden University, Minneapolis.

Labilles, U. (2016). The New Public Health: Beyond Genetics and Social Inequalities. Unpublished manuscript, College of Health Sciences, Public Health, Epidemiology, Walden University, Minneapolis.

Labilles, U. (2017). Pathopoiesis Mechanism of Smoking and Shared Genes in Pancreatic Cancer. ProQuest-CSA, LLC. Library of Congress, Copyright R# TX 8-490-984, Washington DC. doi: 10.13140/RG.2.2.30721.35681

Loomis, D., & Wing, S. (1990). Is molecular epidemiology a germ theory for the end of the twentieth century?. International journal of epidemiology, 19(1), 1-3. http://dx.doi.org/10.1093/ije/19.1.1

McEwen, B. S., & Getz, L. (2013). Lifetime experiences, the brain, and personalized medicine: An integrative perspective. Metabolism62, S20-S26. https://doi.org/10.1016/j.metabol.2012.08.020

Pearce, N. (1996). Traditional epidemiology, modern epidemiology, and public health. American journal of public health86(5), 678-683.

Rothermel, C. (2013). What is health economics and outcomes research? A primer for medical writers. AMWA Journal, 28(3)

Susser, M. (1985). Epidemiology in the United States after World War II: the evolution of technique. Epidemiologic reviews7(1), 147-177. http://dx.doi.org/10.1093/oxfordjournals.epirev.a036280

Travers, J., & Milgram, S. (1969). An experimental study of the small world problem. Sociometry, 425-443. doi: 10.2307/2786545

Verma, M., Khoury, M. J., & Ioannidis, J. P. (2013). Opportunities and challenges for selected emerging technologies in cancer epidemiology: mitochondrial, epigenomic, metabolomic, and telomerase profiling. Cancer Epidemiology Biomarkers & Prevention22(2), 189-200. http://dx.doi.org/10.1158/1055-9965.EPI-12-1263

Wemrell, M., Merlo, J., Mulinari, S., & Hornborg, A. C. (2016). Contemporary epidemiology: a review of critical discussions within the discipline and a call for further dialogue with social theory. Sociology Compass10(2), 153-171. doi: 10.1111/soc4.12345

 

From an Evolutionary Model to the Unified Paradigm of Cancer Causation (UPCC)

Screenshot (94)

Three essential events launched the field of cancer epidemiology during the 18th century. First, is Bernardino Ramazzini’s study on cervical cancer in 1713, the research of Percival Pott in 1775 that led the way on occupational carcinogenic exposure studies, and Thomas Venner on the danger of tobacco use in his Via Recta, published in London in 1620 (American Cancer Society, 2014). After two centuries when John Hill wrote a book entitled “Cautions Against the Immoderate Use of Snuff” in 1761; Krain (1970), along with other studies in the 1970s, Wynder, Mabuchi, Maruchi and Fortner (1973) explored the causality of tobacco use in the development of PC. Jones et al. (2008) found that PCs have an average of 63 genetic alterations that can explain the major features of pancreatic tumorigenesis. The intensive genetic studies described by Jones et al. (2008) gave way to the better understanding of the core set of pathways and processes, embracing the idea of Owens, Coffey, and Baylin (1982) that tumor heterogeneity is a fundamental facet of all solid tumors. While pancreatic cancer (PC) has few viable treatment options, Jones et al. (2008) suggested that the best hope for therapeutic development may lie in the discovery of agents that target the physiologic effects of the altered pathways and processes rather than their gene components. Above all, the significance that could not have been appreciated in the absence of global analysis is the identification of the precise genetic alterations that may be responsible for tumor pathway dysregulation (Jones et al., 2008).

The pathogenic theory of medicine or the germ theory of disease was highly controversial when first proposed as a concept that microorganisms are the cause of many diseases. After validation in the 19th century, germ theory revolutionized both medical thought and the art of surgery, becoming a fundamental part of modern medicine and clinical microbiology. My metatheory, the “Unified Paradigm of Cancer Causation (UPCC)” is as a composite of germ theory and Darwinian evolutionary system (Greaves & Maley, 2012) along with other theories will provide clarity on the narrative of the initiation of PC. Albeit the acceptance of the somatic mutation theory of carcinogenesis (SMT) as the mainstream narrative of how neoplasms develop (Soto & Sonnenschein, 2004), SMT included in the UPCC’s cocktail of theories will build on the arguments of the core principle of genetic variation and pattern of mutations (environmental and genetics) that are sufficient probable causes of the disease. UPCC could explain the behavior of PC cell in rationalizing the complex array of the possible interaction of smoking and inherited genes.

Pancreatic cancer is the fourth most prevalent cause of cancer death in Western societies and is projected to be the second leading cause within a decade (Waddell et al., 2015). While using the Darwinian methods that link human sociocultural progress to genetic evolution (Richerson & Boyd, 2000); Lynch and Rebbeck (2013) used a “Multi-level Biologic and Social Integrative Construct” (MBASIC) to integrate macro environment and individual factors with biology. Considering the limitation and information generated by single-level studies have reached a saturation point (Lynch & Rebbeck, 2013), I highlighted the significance of individual level (behaviors, carcinogenic exposures); and biologic level (inherited susceptibility variants in my dissertation “Pathopoiesis Mechanism of Smoking and Shared Genes in Pancreatic Cancer.” Germline changes associated with PC could range from slightly increased risk (low penetrance genes) to high lifetime risk (high penetrance genes). Given that PC is the antecedent of inherited (germline), and acquired (somatic) mutations in cancer-causing genes, adding the probable correlation between gender and age, modifiable risk factors to the equation that could trigger or wake up a sleeping germline mutation could position the result of a study for improved public health intervention, translation, and implementation in clinical settings to alter the expression of the disease.

References

American Cancer Society. (2014). History of cancer epidemiology. Retrieved from http://www.cancer.org/cancer/cancerbasics/thehistoryofcancer/the-history-of-cancer-cancer-epidemiology

Greaves, M., & Maley, C. C. (2012). Clonal evolution in cancer. Nature, 481(7381), 306-313. doi: 10.1038/nature10762

Hill, J. (1761). Cautions Against the Immoderate Use of Snuff: Founded on the Known Qualities of the Tobacco Plant and the Effects It Must Produce When This Way Taken into the Body. R. Baldwin and J. Jackson, London, UK. (Held now only as a self-contained pamphlet at shelfmark 1560/2918 in the British Library).

Jones, S., Hruban, R. H., Kamiyama, M., Borges, M., Zhang, X., Parsons, D. W., … & Iacobuzio-Donahue, C. A. (2009). Exomic sequencing identifies PALB2 as a pancreatic cancer susceptibility gene. Science324(5924), 217-217. doi: 10.1126/science.1171202

Krain, L. S. (1970). The rising incidence of carcinoma of the pancreas—real or apparent?. Journal of surgical oncology2(2), 115-124. doi: 10.1002/jso.2930020206

Labilles, U. (2015a). Reevaluating the Impact of Cigarette Smoking on Pancreatic Cancer. Unpublished manuscript, College of Health Sciences, Public Health, Epidemiology, Walden University, Minneapolis.

Labilles, U. (2015b, September 27). A Promise to a Dying Brother [Web log post]. Retrieved from https://onenationsecho.com/2015/09/27/a-promised-to-a-dying-brother/.

Labilles, U. (2015c). Prospectus: Tobacco Use and Family Cancer History in the Pathopoiesis of Pancreatic Cancer. Unpublished manuscript, College of Health Sciences, Public Health, Epidemiology, Walden University, Minneapolis.

Labilles, U. (2016). The New Public Health: Beyond Genetics and Social Inequalities. Unpublished manuscript, College of Health Sciences, Public Health, Epidemiology, Walden University, Minneapolis.

Labilles, U. (2017). Pathopoiesis Mechanism of Smoking and Shared Genes in Pancreatic Cancer. ProQuest-CSA, LLC. Library of Congress, Copyright R# TX 8-490-984, Washington DC. doi: 10.13140/RG.2.2.30721.35681

Lynch, S. M., & Rebbeck, T. R. (2013). Bridging the gap between biologic, individual, and macroenvironmental factors in cancer: a multilevel approach. Cancer Epidemiology Biomarkers & Prevention22(4), 485-495. doi: 10.1158/1055-9965.EPI-13-0010

Owens, A.H., Coffey, D.S. & Baylin, S.B. (1982). Tumor cell heterogeneity: Origins and Implications. (Vol 4). San Diego: Academic Press.

Richerson, P. J., & Boyd, R. (2000). Evolution: The Darwinian theory of social change: an homage to Donald T. Campbell. Paradigms of Social Change: Modernization, Development, Transformation, Evolution, pp. 1-30. http://www.des.ucdavis.edu/faculty/richerson/evolutionberlin.pdf

Richerson, P. J., Boyd, R., & Henrich, J. (2010). Gene-culture coevolution in the age of genomics. Proceedings of the National Academy of Sciences, 107(Supplement 2), 8985-8992. doi: 10.1073/pnas.0914631107

Soto, A. M., & Sonnenschein, C. (2004). The somatic mutation theory of cancer: growing problems with the paradigm?. Bioessays26(10), 1097-1107. doi: 10.1002/bies.20087

Waddell, N., Pajic, M., Patch, A. M., Chang, D. K., Kassahn, K. S., Bailey, P., … & Quinn, M. C. (2015). Whole genomes redefine the mutational landscape of pancreatic cancer. Nature518(7540), 495-501. doi: 10.1038/nature14169

Wynder, E. L., Mabuchi, K., Maruchi, N., & Fortner, J. G. (1973). Epidemiology of cancer of the pancreas. Journal of the National Cancer Institute50(3), 645-667. https://doi.org/10.1093/jnci/50.3.645