Indoor Tanning and Melanoma: A Public Health Issue

Indoor TanningIndoor Tanning and Melanoma: A Public Health Issue

Ulysses Labilles and Jennifer Beito

In Minnesota and other parts of the U.S., increase melanoma continue to be common among women than men younger than 50 years. Lazovich et al. (2016) highlighted the gap between age- and the sex-specific association studies between indoor tanning and melanoma. It was found that the strongest correlation between indoor tanning and melanoma is the anatomic site, commonly developed on the trunk in women. Lazovich et al. (2016) stated that while not as strong as for women, 2-fold increase among men who tanned indoors was found to have a higher risk of developing melanomas of the trunk. Furthermore, the findings in this 2016 study are “consistent with the divergent pathway hypothesis for melanoma, which suggest that intermittent solar ultraviolet radiation exposure among those with many nevi, in contrast to chronic solar ultraviolet radiation exposure in persons with fewer nevi, induce the development of the lesion at a younger age, with tumors developing on anatomic sites typically protected from the sun” (Lazovich et al., 2016). Whereas Lazovich et al. (2016) found considerable variation in the correlation between indoor tanning and melanoma by anatomic site, confirming indoor tanning as a possible predictor, responsible for the increased among younger women. Given the timing of increased risk among women indoor tanning users, it is expected for the melanoma epidemic to continue unless indoor tanning is restricted and reduced (Lazovich et al., 2016).


The field of melanoma genetics with new platforms to investigate, makes this area epidemiology move at a high pace. According to Ribero, Glass and Bataille (2016), genes involved in the cell cycle and senescence, identified in the genome-wide association studies over the last ten years, explains the development of the lesion, in addition to telomere biology that further links to reduced senescence. In this study, the role of clinicians was highlighted in recognizing the phenotypic, environmental, and familial risk factors for melanoma to identify those patients at risk who require screening and long-term follow-up (Ribero et al., 2016, p. 338). In this country, skin cancer is the most commonly diagnosed cancer and increasingly becoming a major public health problem with more than 60,000 melanomas diagnosed in 2010 (Rogers et al. 2015; Guy et al. 2015). The potential causality for increased melanoma incidence was discussed by  Rivera, Han, and Qureshi (2013), traced to the 1980 obbligato explosion in indoor tanning. It is, therefore, essential for continued investigation from scientists, professional societies and legislators (Rivera et al., 2013). Using REP resources aggregated from residents of Olmsted County, Minnesota between 1970 and 2009, 256 young adults their first lifetime diagnosis of melanoma, between the ages of 18 and 39 years of age (Reed et al. (2012). The study confirms the arguments of Bleyer et al. (2006) that “the incidence of cutaneous melanoma is increasing among young adults, with this rate increasing more than 6-fold among adult men than women, but incidence are reversed among young adults and adolescents, with the female-male incidence ratio of 1.8 in young adults aged 20 to 24 years.” (Reed et al., 2012, p. 331) Reed et al. (2012) noted that the results of studies from the Rochester Epidemiology Project (REP) might be explained by some sex-specific behaviors such the increase likelihood of young women to participate to different UV light exposure than young men. While De Giorgi et al. (2012) stated that only minimal changes in mortality had been observed, there is a continuous increase in melanoma incidence worldwide. De Giorgi et al. (2012) supported the argument that indoor tanning may have been responsible for increased melanoma incidence in women and younger tanning bed users with higher estimated risk ratio in the general population. Debates over reducing indoor tanning tend to dominate discussions for its potential to reduce melanoma incidence, mortality, and treatment costs, the findings of the 2016 study of Guy et al. underscored the increased economic benefits and quantified the significance of continued efforts to reduce indoor tanning in preventing melanoma. Using a Markov model to estimate the expected number of melanoma cases,  lives and treatment costs saved, Guy et al. (2016) estimated 61,839 melanoma cases, prevent 6735 melanoma deaths, saving $342.9 million in treatment costs over the lifetime of the 61.2 million youth age 14 years or younger in the U.S. by restricting the use of  indoor tanning among minors younger than 18 years (, n.d.).

Discussion. Melanoma remains a public health issue, despite efforts to reduce indoor tanning, making melanoma incidence to rise continuously in the U.S. and globally, over and above-attempted prevention efforts (Le Clair, & Cockburn, 2016). The increased risk of malignant melanoma and other forms of skin cancer are found to be correlated with the ultraviolet radiation from indoor tanning device, considered to be an urgent public health issue need to adopt the Action Model to Achieve Healthy People 2020. Ultraviolet light emitted from tanning beds is classified carcinogenic by the World Health Organization International Agency for Research on Cancer (IARC) in 2009, as an interceptive response to the associated risk of exposure with the initiation of melanoma (El Ghissassi et al., 2009). Tanning beds and its carcinogen, the length of time the skin is exposed, and whether or not the skin is protected with prescribed protection such sunscreen are all the key influences contributing the increased risk. Many individuals are exposed to sunlight during their quotidian lives, and popular alfresco activities elevate a person’s chance of developing skin cancer. For example, athletes who spend countless hours training and competing in the sun, workers who need to be under the direct sun exposure all day and children who play outside for countless hours are more prone to developing skin cancer. Exposure to UV radiation during childhood plays is a major role in the future development of melanoma and non-melanoma skin conditions. Many studies have determined that even short, intermittent but excruciating exposure to sunlight during childhood and adolescence significantly increase one’s risk of developing melanoma. More than one moiety of a person’s lifetime UV exposure occurs during childhood and adolescence. If a person has a history of one or more blistering sunburns during childhood or adolescence, such exposure could put these individuals two times greater risk to developing melanoma than those who did not have such exposures (Glanz, & Wechsler, 2002). Ultraviolet radiation is divided into three wavelengths ranges, however; only two of the ranges authentically perforate our atmosphere, UVA, and UVB. Scientists initially believed that only UVB rays played a role in the formation of skin cancer. UVB light does cause deleterious transmutations in skin cell DNA. UVB rays are responsible for sunburn and many basal and squamous cell cancers (English, Canchola & Finley, 1998). However, there are no safe UV rays. UVA rays withal contribute to skin cancer. These rays could cause a deeper skin damage than UVB, emasculates the skin’s immune system and increases the peril of cancer development, especially melanoma. Tanning lamps and tanning beds distribute high doses of UVA, which makes them especially hazardous (Goldstein & Goldstein, 2001). A 2002 Dartmouth study as noted by Goldstein and Goldstein (2001) showed tanning bed users had 2.5 times the peril of SCC and 1.5 times the jeopardy for BCC. Individuals more predisposed than others to the damaging effects of UV radiation could develop skin cancers. The increased risk of melanoma is shown to be higher among individual with family history. Melanoma and other types of skin cancer, risk factors include light or fair skin color, natural blond or red hair, sun sensitivity, immune suppression disease, vocation and geographic location (Goldstein & Goldstein, 2001).

Cases ascertained by a population-based, statewide cancer registry known as the Minnesota Cancer Surveillance System Skin Health Study and approved by the Institutional Review Board at the University of Minnesota, Lazovich et al. (2010) addressed the limitations on past studies in adjusting sun exposure and dose response of individuals using indoor tanning. Individuals diagnosed with any histologic type of melanoma between July 2004 and December 2007, between the ages of 25 and 59 was collected based on state driver’s license or state identification card. Previous studies show that indoor tanning use decreases with age. Therefore, the researchers truncated the age limit to 59 years old. Multiple regression was performed, and adjusted odd ratios show the likelihood of melanoma among users of indoor tanning, and never users were similarly elevated regardless of the age when indoor tanning began (Lazovich et al., 2010). The study of Lazovich et al. (2010) has several significant findings: “First, melanoma was found to be more frequent among indoor tanners compared with persons that never engaged in this activity. Second, measured by total hours, sessions, or years, a strong dose-response relationship was found between melanoma risk. Lastly, an increased risk of melanoma was found with the use of each type of tanning device examined as well as with each period of tanning use, suggesting that no device could be considered safe. Burns from indoor tanning seemed to be fairly common and conferred a similar risk of melanoma to sunburns, strengthening the associations explored significant even after adjusting for the potential confounding effects of known risk factors for melanoma.” (pp. OF9-OF10) Le Clair and Cockburn (2016) asserted the importance of prevention through doctor’s consultation, focusing on the significant impact of behavioral change than written intervention. The findings of this study suggest that knowledge of sun sensitivity in individuals with high UVR sensitivity may reinforce a positive outcome in sun exposure habits, and could represent a useful tool for reducing indoor tanning (Le Clair, & Cockburn, 2016, p.142). Spending an abundance of time alfresco for work or recreation without protective apparel and sunscreen increases the risk to develop skin cancers.  However, no matter what treatment you may cull; the primary cause is something which is kenned and avoidable – natural and artificial UV rays. As a result, the 2 primary aversion methods are simple to recollect, edify and implement – they are endeavored and proven (Goldstein & Goldstein, 2001): “Significantly limit exposure to the sun between the hours of 10 am and 4 pm, utilizing a sunscreen with an SPF of 15 or higher at all times each day, cover your skin with apparel, wear a hat and use sunglasses. Second, verbally express “no” to all other sources of UV radiation such as tanning beds and tanning lamps. Ergo, the next time you visually perceive someone exiting the tanning salon, relaxing midday in the direct sun at the beach or ambulating around with a flamboyantly discernible tan, do not be envious. Instead, view this person as you would a person smoking a cigarette. They are acting temerariously and jeopardizing their lives in an endeavor to imitate what is occasionally introduced by the media. Recollect, despite what the media may lead you to believe; you do not require a tan to look good. During the 2012 meeting by the Centers for Disease Control and Prevention (CDC), it was concluded that future cases of skin cancer could be prevented, along with the associated morbidity, mortality, and healthcare costs through discussion of research gaps and current body of evidence on strategies to reduce indoor. The overarching goals of Healthy People 2020 should be the framework of existing and future studies embracing the state of the evidence on strategies to reduce indoor tanning; the tools necessary to adequately assess, monitor, and evaluate the short- and long-term impact of interventions designed to reduce indoor tanning; and strategies to align efforts at the national, state, and local levels through transdisciplinary collaboration and coordination across multiple sectors (Holman et al., 2013).

Conclusion. The participation of health care providers is required for information dissemination as well as physical and psychological screenings to improve education to address the misconception about tanning safety. According to Friedman et al. (2105) “Public perception of the purported health benefits of indoor tanning can be blamed for the popularity of tanning salons as a desire to prepare the skin before sun exposure, the most commonly cited motivations for indoor tanning.” improve education to address the misconception about tanning safety. Artificial UVR is often misconceived to produce a “safer” tan than outdoor sunlight (CDC, 2014). Le Clair, & Cockburn (2016) argued that this belief is  “contradicted by scientific evidence, and must be addressed to effectively reduce the burden of indoor tanning on health outcomes worldwide.” (p. 140) According to Whitmore et al. (2001), Karagas et al. (2002), and Green et al. (2007), DNA damage in skin cells caused by exposure to indoor tanning UVR is associated with an increased risk of melanoma induction and other types of non-melanoma skin cancers. In-depth understanding of clinicians providing public health education outreach programs is critical from the epidemiology of melanoma to the increased risk of the developing tumors with the frequent use or use of tanning beds. Lobbying efforts such as the Indoor Tanning Association are the most significant barrier to state indoor tanning legislation (Obayan et al., 2010). The risk and benefits of indoor tanning was discussed during the 2012 report of the minority staff of the House Committee on Energy and Commerce, asserted that 80 % of tanning salons told investigators that indoor tanning was beneficial to fair-skinned teenage girls, while 90 % of tanning salons denied that sunlamp use posed any health risks to this vulnerable group (Gottlieb et al., 2015). Such argument not supported by peer-reviewed study should always be challenged, and leaders both political, healthcare and public health should continue to cooperate in drafting evidence-based legislations to ease the economic and individual burden of melanoma induced by indoor tanning. It is paramount to increase the height of prevention efforts, not only limiting the use of tanning beds to children aged 18 or younger, but also to young adults over 18 years old who have increased the risk to melanoma. The transdisciplinary, multilevel, and coordinated approach has the potential to combat future cases melanoma and other forms of skin cancers by reducing indoor tanning, withal many barriers and challenges. While the role of new common sense legislation in tandem with public education campaigns is paramount, mass media campaigns are critical in introducing strategies and highlighting shared environmental risk, as well as the avoidable risk of indoor tanning use. Holman et al. (2013) posit that by reducing indoor tanning use, future cases of skin cancer could be prevented through tailored interventions following the context of comprehensive skin cancer prevention that promotes sun protection and sunburn avoidance when outdoors (Coups, Manne & Heckman,2008). Addressing contextual factors that promote tanning, including environmental and systems changes, social norms, the indoor tanning industry and the media will be dependent upon close coordination and collaboration of key partner across multiple levels. Continued literature must be encouraged among legislators, clinicians, and public health leaders, spreading its highlights through effective mass media outreach.


Bleyer, A., O’Leary, M., Barr, R., & Ries, L. A. G. (2006). NIH Publication No 06-5767. Bethesda, MD: National Cancer Institute. Cancer epidemiology in older adolescents and young adults, 15, 1975-2000.

Coups, E. J., Manne, S. L., & Heckman, C. J. (2008). Multiple skin cancer risk behaviors in the US population. American journal of preventive medicine, 34(2), 87-93.

CDC (2014). The Burning Truth. Retrieved from (2014)

El Ghissassi, F., Baan, R., Straif, K., Grosse, Y., Secretan, B., Bouvard, V., … & Cogliano, V. (2009). A review of human carcinogens—part D: radiation. The lancet oncology, 10(8), 751-752.

English 3rd, J. C., Canchola, D. R., & Finley, E. M. (1998). Axillary basal cell carcinoma: a need for full cutaneous examination. American family physician, 57(8), 1860-1864.

De Giorgi, V., Gori, A., Grazzini, M., Rossari, S., Oranges, T., Longo, A. S., … & Gandini, S. (2012). Epidemiology of melanoma: is it still epidemic? What is the role of the sun, sunbeds, Vit D, betablocks, and others?. Dermatologic Therapy, 25(5), 392-396.

Faculty Expertise in Cancer – School of Public Health. (n.d.). Retrieved from

Friedman, B., English, J. C., & Ferris, L. K. (2015). Indoor tanning, skin cancer, and the young female patient: a review of the literature. Journal of pediatric and adolescent gynecology, 28(4), 275-283.

Glanz, K., Saraiya, M., & Wechsler, H. (2002). Guidelines for school programs to prevent skin cancer. MMWR. Recommendations and reports: Morbidity and mortality weekly report. Recommendations and reports/Centers for Disease Control, 51(RR-4), 1-18.

Goldstein, B. G., & Goldstein, A. O. (2001). Diagnosis and management of malignant melanoma. American family physician, 63(7), 1359-68.

Gottlieb, M., Balk, S. J., Geller, A. C., & Gershenwald, J. E. (2015). Teens and Indoor Tanning: Time to Act on the US Food and Drug Administration’s Black-Box Warning. Annals of surgical oncology, 22(3), 701-703.

Green, A., Autier, P., Boniol, M., Boyle, P., Doré, J. F., Gandini, S., … & Westerdahl, J. (2007). The association of use of sunbeds with cutaneous malignant melanoma and other skin cancers. International Journal of Cancer120(5), 1116-1122.

Guy, G. P., Machlin, S. R., Ekwueme, D. U., & Yabroff, K. R. (2015). Prevalence and Costs of Skin Cancer Treatment in the US, 2002− 2006 and 2007− 2011. American journal of preventive medicine, 48(2), 183-187.

Guy, G. P., Zhang, Y., Ekwueme, D. U., Rim, S. H., & Watson, M. (2016). The potential impact of reducing indoor tanning on melanoma prevention and treatment costs in the United States: An economic analysis. Journal of the American Academy of Dermatology.

Holman, D. M., Fox, K. A., Glenn, J. D., Guy, G. P., Watson, M., Baker, K., … & Sampson, B. P. (2013). Strategies to reduce indoor tanning: current research gaps and future opportunities for prevention. American journal of preventive medicine, 44(6), 672-681.

Increasing Incidence of Melanoma Among Young Adults: An … (n.d.). Retrieved from

Indoor tanning for kids? Might as well expose them to … (n.d.). Retrieved from

Karagas, M. R., Stannard, V. A., Mott, L. A., Slattery, M. J., Spencer, S. K., & Weinstock, M. A. (2002). Use of tanning devices and risk of basal cell and squamous cell skin cancers. Journal of the National Cancer Institute94(3), 224-226.

Lazovich, D., Vogel, R. I., Berwick, M., Weinstock, M. A., Anderson, K. E., & Warshaw, E. M. (2010). Indoor tanning and risk of melanoma: a case-control study in a highly exposed population. Cancer Epidemiology and Prevention Biomarkers, 1055-9965.

Lazovich, D., Vogel, R. I., Weinstock, M. A., Nelson, H. H., Ahmed, R. L., & Berwick, M. (2016). Association between indoor tanning and melanoma in younger men and women. JAMA Dermatology, 152(3), 268-275.

Le Clair, M. Z., & Cockburn, M. G. (2016). Tanning bed use and melanoma: Establishing risk and improving prevention interventions. Preventive Medicine Reports, 3, 139-144.

Obayan, B., Geller, A. C., Resnick, E. A., & Demierre, M. F. (2010). Enacting legislation to restrict youth access to tanning beds: A survey of advocates and sponsoring legislators. Journal of the American Academy of Dermatology63(1), 63-70.

Position Statement on Indoor Tanning (Approved by the … (n.d.). Retrieved from

Reed, K. B., Brewer, J. D., Lohse, C. M., Bringe, K. E., Pruitt, C. N., & Gibson, L. E. (2012). Increasing incidence of melanoma among young adults: an epidemiological study in Olmsted County, Minnesota. In Mayo Clinic Proceedings (Vol. 87, No. 4, pp. 328-334). Elsevier.

Ribero, S., Glass, D., & Bataille, V. (2016). Genetic epidemiology of melanoma. European Journal of Dermatology, 26(4), 335-339.

Rivera, A. R., Han, J., & Qureshi, A. A. (2013). Has too much blame been placed on tanning beds for the rise in melanoma diagnosis?. Expert Review of Dermatology, 8(2), 135-143.

Rogers, H. W., Weinstock, M. A., Feldman, S. R., & Coldiron, B. M. (2015). Incidence estimate of nonmelanoma skin cancer (keratinocyte carcinomas) in the US population, 2012. JAMA Dermatology151(10), 1081-1086.

US House of Representatives Committee on Energy and Commerce (2012). A new report reveals indoor tanning industry’s false and

misleading practices. Retrieved from HTTP://

Whitmore, S. E., Morison, W. L., & Potten, C. S. (2001). Tanning salon exposure and molecular alterations. Journal of the American Academy of Dermatology44(5), 775-780.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )


Connecting to %s