Tag Archives: Population Health and Issues in Disease Prevention (PUBH – 8050 – 3)

“In our fight against cancer—we must be unwilling to postpone—for the loved ones we’ve lost and the ones we can save.”

Socioeconomic Status and Public Health Financing

Health financing is the cornerstone of strategy development based on both in terms of raising resources and of ways to manage resources. It is critical to emphasize the need for greater evaluation of the distributional impact of policies and programs. Socioeconomic status could affect public health financing such as people with insurance or money, creating higher expenditures. On the other hand, medically underserved, uninsured and underinsured create greater expenses because they enter the health system at the advanced stages of diseases and in weakened conditions (Laureate Education, Inc., 2012). In addition to socioeconomic status, other social determinants that affects both average and distribution of health includes physical environment, lifestyle or behavior, working conditions, social network, family, demographics, political, legal, institutional and cultural factors. Since funding is considered as a scarce resource, it is paramount to allocate resources based on the identified gaps in care. The significance of socioeconomic data in US public health surveillance systems should be emphasized in order to monitor socio-economic gradients in health. Socioeconomic data is important in determining the allocation of resources for public health financing. Krieger et al. (2003) stated that the use of multilevel frameworks and area-based socioeconomic measures (ABSMs) for public health monitoring can potentially overcome the absence of socioeconomic data in most US public health surveillance systems. Moreover, political will is essential to bridging public health and action that will help in the development and implementation of public health policy based on scientific evidence and community participation. Epstein, Stern and Weissman (1990) found that hospitalized patients with lower socioeconomic status have longer stays and require more resources. It was suggested in this study that supplementary payments allocated to the poor merits further consideration. Strategies for more efficient provision of care for patients with low socioeconomic status can be developed at the managerial and clinical levels.

Inequality or disparity is defined as the difference in health status, inequalities in access to and quality of health care services. Additional disparities are attributed to factors such as discrimination in relation to health care system and the regulatory climate. The Institute of Medicine (IOM) found that disparities continue to dwell even when socio-demographic factors, insurance status, and clinical needs were controlled for racial and ethnic health care. Disparities dictate funding requirements for public health initiatives for the underserved populations. Furthering social justice and maximizing individual liberties will advance traditional public health goals. Socioeconomic status of communities drives the financing needs for public health initiatives; therefore, burdens of the program must be minimized and identified to reduce pre-existing social injustices. Social benefits, public health programs that stimulate dignified employment, and strengthening of communities are important benefits that should be given high consideration. Public health professionals and health department leaders may not have the capacity to implement all programs that could be beneficial to a target population or community, but advocacy is paramount to improving health. Sufficient data is critical to justify the necessity of the program. I believe that it is our duty as healthcare and public health leaders to remove from policy debates and decision-making any discriminatory procedures or unjustified limitations on personal liberties. Public policy should be based on an ethics perspective and multiple considerations.


Bleich, S. N., Jarlenski, M. P., Bell, C. N., & LaVeist, T. A. (2012). Health inequalities: trends, progress, and policy. Annual review of public health33, 7.

Carter-Pokras, O. & Baquet, C. (2002). What is a” health disparity”? Public health reports117(5), 426.

Epstein, A. M., Stern, R. S., & Weissman, J. S. (1990). Do the poor cost more? A multihospital study of patients’ socioeconomic status and use of hospital resources. New England Journal of Medicine322(16), 1122-1128.

Getzen, T. E. (2013). Health economics and financing (5th ed.). Hoboken, NJ: John Wiley and Sons.

Kass, N. E. (2001). An ethics framework for public health. American Journal of Public Health91(11), 1776-1782.

Krieger, N., Chen, J. T., Waterman, P. D., Rehkopf, D. H., & Subramanian, S. V. (2003). Race/ethnicity, gender, and monitoring socioeconomic gradients in health: a comparison of area-based socioeconomic measures-the public health disparities geocoding project. American journal of public health93(10), 1655-1671.

Laureate Education, Inc. (Executive Producer). (2012). Multi-media PowerPoint: Financing public health. Baltimore, MD: Author.

Palmer, N., Mueller, D. H., Gilson, L., Mills, A., & Haines, A. (2004). Health financing to promote access in low income settings—how much do we know? The Lancet364(9442), 1365-1370.

Patrick, D. L., & Erickson, P. (1993). Health status and health policy. Quality of life in health care evaluation and resource.

Shi, L., & Singh, D. A. (2011). The nation’s health (8th ed.). Sudbury, MA: Jones & Bartlett Learning.

“Personal Health Records (PHR) and Health Information Exchange (HIE) in Managing Regional Multi-Site Medical Specialty Practice”

The true, meaningful use of personal health records (PHR), and  health information exchange (HIE) between regional sites or multi-site specialty practice could amplify coordination and efficiency for higher quality and  patient-centered care. PHR and HIE have been advocated as key new components in the effective delivery of modern health care. What is the impact of PHR and HIE to healthcare system? How can sharing health information between regional sites or multi-site specialty practice bridge the communication gap?  What is the role of specific-disease surveillance system in enhancing the management and delivery of quality of care? The effective use of cancer-related information aggregated from evolving health communication and information technology can help identify disease cluster such as the incidence of skin cancer in a geographic area which could improve communication strategy on a population wide basis. The processes of health communication and supportive health information technology infrastructure can influence patients’ health decisions, health-related behavior, and health outcomes. These make health communication and health information technology play an increase central role in health care delivery and public health. HINTS data could help a regional manager harness the appropriate communication channel to coordinate between facilities, and to identify barriers to the use of health information across community. Gauging the target group’s attitudes, regarding perceptions of health-relevant topics such as cancer screening will help develop more effective communication strategies. For example, a marked increase in the incidence rate of non-melanoma skin cancer (NMSC) based on a comprehensive surveillance system could help Mohs Micrographic Surgery facilities coordinate with dermatologists and dermato-pathologists. HINTS data can help refine information age health communication theories, and offer unique recommendations for managers, communication planners and researchers in their common aim to reduce the population cancer burden through effective, evidence-based, and patient- or public-centered communication (Hesse et al., 2006; Hesse et al., 2005; Nelson et al., 2004). The concept that captures an interactive phenomenon such as shared decision-making (SDM) utilized in concert with HINTS data recommendations will improve clinicians and patients communication. Kasper, Légaré, Scheibler & Geiger (2012) asserted that the complexity of challenges physicians have to face in critical decision making, can be alleviated by outsourcing parts of the information and decision making process to other health or medical professionals to provide optimal conditions for communication in the physician patient dyad.


Finney Rutten, L. J., Davis, T., Beckjord, E. B., Blake, K., Moser, R. P., & Hesse, B. W. (2012). Picking up the pace: changes in method and frame for the health information National Trends Survey (2011–2014). Journal of health communication17(8), 979-989.

Hesse, B. W., Nelson, D. E., Kreps, G. L., Croyle, R. T., Arora, N. K., Rimer, B. K., . . . Viswanath, K. (2005). Trust and sources of health information: The impact of the Internet and its implications for health care providers: Findings from the first Health Information National Trends Survey. Archives of Internal Medicine, 165, 2618–2624.

Hesse, B. W., Moser, R. P., Rutten, L. J. F., & Kreps, G. L. (2006). The health information national trends survey: research from the baseline. Journal of Health Communication11(S1), vii-xvi.

Kasper, J., Légaré, F., Scheibler, F., & Geiger, F. (2012). Turning signals into meaning–‘Shared decision making’meets communication theory. Health Expectations15(1), 3-11.

Labilles, U. (2014). The Role of Disease-specific Surveillance and Health Information Exchange (HIE) in Managing Regional Multi-site Medical Specialty Practice. (Unpublished, RSCH-8100H-2. Research Theory, Design, and Methods. 2014 Spring Qtr. WK7Assgn) Walden University, Minneapolis.

Nelson, D. E., Kreps, G. L., Hesse, B. W., Croyle, R. T., Willis, G., Arora, N. K., . . . Alden, S.
(2004). The Health Information National Trends Survey (HINTS): Development, design,
and dissemination. Journal of Health Communication, 9, 443–460.

Office of Disease Prevention and Health Promotion. (2010). Healthy People 2020. Retrieved
from http://www.healthypeople.gov/2020/default.aspx

Scholl, I., Loon, M. K. V., Sepucha, K., Elwyn, G., Légaré, F., Härter, M., & Dirmaier, J. (2011). Measurement of shared decision making–a review of instruments. Zeitschrift für Evidenz, Fortbildung und Qualität im Gesundheitswesen105(4), 313-324.

Viswanath, K. (2005). Science and society: The communications revolution and cancer control. Nature Reviews Cancer, 5, 828–835.

Wen, K. Y., Kreps, G., Zhu, F., & Miller, S. (2010). Consumers’ perceptions about and use of the internet for personal health records and health information exchange: analysis of the 2007 Health Information National Trends Survey.Journal of medical Internet research12(4).

“What the Patterns Tell Us” Socioeconomic Status and Health

Fifty years ago, President Lyndon Johnson began his quest for a more just and honorable America with the passage of the Civil Rights Act of 1964, passed the Voting Rights Act of 1965 and the Fair Housing Act of 1968.  This week, President Barack Obama joined three former Presidents delivered remarks at the Civil Rights Summit at the Lyndon B. Johnson Presidential Library and Museum, and acknowledged racism has hardly been erased and that government programs have not always succeeded. Let us talk about socioeconomic and racial/ethnic disparity patterns in public health. What the patterns tell us? In Europe, the presence of detailed socioeconomic information in routine health data has facilitated the monitoring of socioeconomic patterns in diverse health indicators (Braveman, Cubbin, Egerter, Williams &  Pamuk, 2010). This socioeconomic information gave Public health professionals and researchers the ability to compare health of socioeconomically disadvantaged population with health differences among middle-class subgroups and, potentially, comparisons with the wealthy.  Braveman et al. (2010) gave emphasis on Europe’s data collection in contrast with routine the routine public health statistics in the United States.  Health difference across groups defines by socioeconomic factors have been examined less frequently. It was further noted by the study that routine health reporting should examine socioeconomic and racial/ethnic disparity patterns, jointly and separately. According to Collins (2004) “race and ethnicity are poorly defined terms that serve as flawed surrogates for multiple environmental and genetic factors in disease causation, including ancestral geographic origins, socioeconomic status, education and access to health care. Research must move beyond these weak and imperfect proxy relationships to define the more proximate factors that influence health” (para. 1).

Health disparities in many instances will hardly to do with genetics, but more directly associated in socioeconomic status (SES), access to health care, education, social marginalization, discrimination, culture, stress, diet and other factors. SES is one of the strongest and most consistent predictors of morbidity and mortality. As a complex phenomenon, the impact of SES on disease makes its definition and measurement of vital importance. SES is typically measured by determining education, income, and occupation (Winkleby, Jatulis, Frank & Fortmann, 1992). The Farquhar et al study is the only U.S. study on the associations between separate SES dimensions and risk factors or disease outcomes (Winkleby et al., 1992).  In the Farquhar et al. study (1985): Subjects aged 25 to 64 were drawn from the two control cities of the Stanford Five-City Project, a communitywide cardiovascular disease intervention study that contains data from four separate cross-sectional surveys, conducted from 1979 to 1986. Participants who were unemployed (n = 98), students (n = 130), or retirees (n = 146) were excluded because they had no occupation that could be ranked (Winkleby et al., 1992, p. 816).  Associations between one measure of SES and one risk factor, morbidity, or mortality in other studies have found that education is more strongly associated with disease than income or occupation.  One of the most complete studies of mortality differentials (Kitagawa et al., 1973) found “lower SES groups exhibited higher rates of all-cause mortality than did higher SES groups, irrespective of whether education, income, or occupation was used as the measure of SES” (p. 819). Lower levels of education are associated with hypertension, cigarette smoking, high cholesterol, cardiovascular disease (CVD) morbidity and mortality. According to Winkleby et al.,  there are no SES measure that is universally valid and suitable for all populations. The study noted  “if economics and time dictate that a single parameter be chosen, and if the research hypothesis does not dictate otherwise, the conclusion is that higher education, rather than income or occupation, may be the strongest and most consistent predictor of good health” (p. 819).


Abramson, J., Gofin, R., Habib, J., Pridan, H. & Gofin, J. (1982). A comparative Appraisal of measures for use in epidemiological studies. Soc Sci Med., 16,1739-1746.

Berger, M. & Leigh, J. (1989). Schooling, self-selection and health. J Hum Res. 24, 433-455.

Civil Rights Summit. (n.d.). Retrieved from http://www.civilrightssummit.org/ Chicago: Civil Rights Summit, http://www.civilrightssummit.org/ (accessed April 12, 2014).

Dyer, A., Stamler, J., Shekelle, R. & Schoenberger, J. (1976). The relationship of education to blood pressure: findings on 40,000 employed Chicagoans. Circulation. 54, 987-992.

Helmert, U., Herman, B., Joeckel, K., Greiser, E. & Madans, J. (1989). Social class and risk factors for coronary heart disease in the Federal Republic of Germany: results of the baseline survey of the German Cardiovascular Prevention Study. J Epidemiology Community Health. 43, 37-42.

Hypertension Detection and Follow-up Program Cooperative Group. Race, education and prevalence of hypertension. (1977). Am J Epidemiology. 106, 351-361.

Jacobsen, B. & Thelle, D. (1988). Risk Factors for coronary heart disease and level of eduvation. Am J Epidemiology. 127, 923-932.

Kitagawa, E. & Hauser, P. (1973). Differential mortality in the United States: Study in socioeconomic epidemiology. Harvard University Press, Cambridge, Mass.

Labilles, U. (2013). What the Patterns Tell Us: Socioeconomic Status and Health  (Unpublished, PUBH 8115-1 Wk6 Discussion, Social Behavioral and Cultural Fact in Public Health Spring Qtr.) Walden University, Minneapolis.

Millar, W. & Wigle, D. (1986). Socioeconomic disparities in risk factors for cardiovascular disease. Can Med Assoc J. 134, 127-132

Matthews, K., Kelsey, S., Meilahn, E., Kuller, L. & Wing, R.(1989). Educational attainment and behavioral and biological risk factors for coronary heart disease in middle-aged women. Am J Epidemiology, 129, 1132-1144.

Socioeconomic status and health: … preview & related info … (n.d.). Retrieved from     http://www.mendeley.com/catalog/socioeconomic-status-health-education-income-occupation-contribute-risk-factors-cardiovascular-disea/

Socioeconomic disparities in health in the United States … (n.d.). Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/20147693

Pinsky, J., Leaverton, P. & Stokes, J. (1987). Predictors of good function: The Framingham study. Journal of Chronic Disease, 40, 159S-167S.

Snowden, D., Ostwald, S. & Kane, R. (1989). Education, survival and independence in elderly Catholic sisters. American Journal of Epidemiology, 130, 999-1012.

What we do and don’t know about ‘race’, ‘ethnicity’, genetics … (n.d.). Retrieved from http://www.nature.com/index.html?file=/ng/journal/v36/n11s/full/ng1436.html

Major Trends in Genomic Research and Development: Emerging Challenge to Public Health and Global Security

Shortly after I heard about the shooting at Fort hood on Wednesday, it again reminded me about the November 2009 massacre when Army Maj. Nidal Malik Hasan opened fire, killing 13 people and injuring 32. The first question that crossed my mind—is this another terrorist attack? Three days after the April 15, 2012 Boston marathon bombings, President Barack Obama travelled the city and reassure us as a nation to keep our spirit strong. The President stated “We carry on. We race. We strive. We build and we work, and we love, and we raise our kids to do the same. And we come together to celebrate life and to walk our cities and to cheer for our teams when the Sox, then Celtics, then Patriots or Bruins are champions again, to the chagrin of New York and Chicago fans”. This again assert the reality, that after the attack of 9/11 our lives will never be the same again. The increasing recognition that advances in biology is the center of current concerns about the heightened probability of genetics in facilitating the development of a new generation of biological weapons. The scientific and security communities should increase their vigilance on the misuse of genomic data and the ongoing trend of revolution on biology (Labilles, 2013b).  Advances in Genomics may have a significant impact to public health, but serious concerns have been raised about the consequences of the misapplication of this field for hostile purposes. Therefore, it is critical for the continued development of sophisticated analytic techniques to better distinguish anomalies from baseline data. Likewise, combined expertise amongst systems enhance early detection performance for detection of infectious diseases. Professor Thomas D. Cabot of Harvard University has said: “A world in which these capabilities are widely employed for hostile purposes would be a world in which the very nature of conflict had radically changed.” Labilles (2013c), we need to be aware of the implications of programs such as the Free Trade Agreement (FTA), and the need of strict surveillance of the methods and what is being traded between boundaries” (para.3). Our understanding of the brain and human behavior is reaching the point at which precise manipulation for beneficial reasons is clearly feasible. The information presently available has become widely used for military purposes, and there will be knowledge available for misuse, and there will be some willing to misuse it. The line of differentiation between chemical and biological weapons is getting thinner as the genomics revolution continuous.  An individual intentionally infected by Variola major and cross the border will be a deadly moving biologic weapon. This will cause high mortality, public panic and social disruption (Labilles, 2013b, p. 2). The terrorists’ main goal is always to challenge Americans’ sense of safety and confidence, a small chemical, biological, radiological, or nuclear (CBRN) attack could be successful.

According to Richard (2000), highest estimates of the Central Intelligence Agency (CIA) indicate that as many as 100,000 people may be trafficked into the U.S. each year. Modified traditional agents targeted at specific physiological processes can be carried or injected to any individuals estimated to be trafficked into the United States annually. The office of transnational Issues of the US CIA issued a bleak warning in the late 2003 about the future of biological weapons. The report, titled The Darker Bioweapons Future, argued “growing understanding of the complex biochemical pathways that underlie life processes have the potential to enable a class of new, more virulent biological agents engineered to attack distinct biochemical pathways and elicit specific effects” (Wheelis & Dando, 2005).  The report cited of specific examples of new biological weapons and noted about the effects of some of these engineered biological agents could be worse than any disease known to man.

The CIA estimated prevalence of human trafficking vary widely both by year and by the source, with no particular trend (Hopper, 2004, p. 125). A free and open society like the U.S. will always be tested by people who hated the kind of freedom we inherited from our founding fathers. While lethal chemicals are easy to acquire, getting large quantities, and weaponizing are difficult; biological agents can be acquired in nature or from medical supply houses. Like cyberthreats, biothreats are relatively inexpensive compared to explosive, nuclear, and chemical weapons. Both cyber and biothreats can replicate themselves and spread again in their respective cyber and physical borders (Rosen, 2011). To improve psychological profiling of terrorist groups and to develop better theories regarding the roots of terrorism, the need of scientific methodology application must be recognized. It is essential to be informed on the four biosecurity trends in order to avert the concept of militarization of biology, and focus on the potential for hostile manipulation of the human nervous system.

  1. Chemical, biological, and the manipulation and misuse of Emerging Infectious Disease: There is an unequivocal distinction between terrorism with chemical and biological (CB) materials, and terrorism with chemical and biological weapons. Rosen & Lucey (2001): Terrorism with CB materials deals with the use of any toxic substance or pathogen in pursuit of certain goals. Terrorism with CB weapons refers to the use of warfare agent that is a toxic chemical designed, developed and selected by the military to support specific missions laid out in the military doctrine of a state. This distinction highlights the deeper significance of the 1995 sarin attack in the Tokyo underground: for the first time a terrorist organization turned to a warfare agent (p. 172). Unknown potential threats of the emergence of dual-use technologies such as synthetic biology and nanotechnology pose additional security and containment challenges.  Nanoscale-manipulated biological agents evading current detection capabilities and the unpredictable dissemination patterns of synthetic microorganisms is a major challenge. As a proactive posture to a rapidly changing global environment, the US National Strategy for Countering Biological Threats is emphasizing prevention while continuing to support the national preparedness goals and response/recovery capabilities. The study Perkins & Nordmann (2012) aim to enhance the collective capability of the United States and the international community to address emerging health security threats. The study emphasized the need to increase our knowledge of health effects of various types of nanomaterials, and how to assess, control, and prevent harmful exposure, taking into consideration the numerous gaps that currently exist with regard to the distinct behavior of nanoparticles compared to the same chemical or material at “macro-scale”.
  2. Mass-casualty Terrorism: A large scale bio-terrorist (BT) disaster would create a public health disaster in which the number of victims would exceed existing health care resources. It is an intentional disaster with the objective of causing fear, illness and death. The study of the Committee on Research and Development for improving Civilian Medical Response to Chemical and Biological Terrorism Incidents—suggest that in most cases, the United States will have some or little capability for BT mass casualty management, and triage at four levels of medical care. The four levels of medical care are local responders, initial treatment facilities, state, and federal. At the time of the study, existing conventional management and triage protocols for disasters is not fit for casualty management needs for a large-scale BT event. The three phases of management and triage process after BT event are discovery phase, epidemiological analysis phase, and lateral decision-making/triage management phase. The discovery phase of a BT event will most likely occur in an emergency department, doctor’s office or clinic (Burkle, 2002). Assumptions about the nature of the event will initially guide triage and management during the discovery phase. Syndromic surveillance is an essential component of the discovery phase base on signs and symptoms and supporting public health information. The early clinical manifestations of disease caused by most BT agents could be non-specific, or certain syndromes would be a characteristic of a potential BT attacks. Awareness of these syndromes by practitioners is significant to early discovery of an exposure. The syndromic events are a perfect determinant for surveillance to control the spread of an infectious pathogen. Agent-based models (ABM) can be used to establish structured epidemiological description of a population or infected individuals and local interaction. Agent-based Model (ABM) algorithm allows one to keep the number of active (Exposed and Infectious) agents low at the beginning of the epidemic process and thus decreases the computational burden. As the number of activated agents increases, and increases the amount of required computational resources. Using ABM, an individual is considered to be in one of the following four states: (1) Susceptible (can contract the disease given the contact with an infected individual), (2) Exposed (contracted the diseases, but is in a latent state without showing symptoms), (3) Infectious (showing symptoms and capable of infecting others), and (4) Recovered (obtained permanent immunity and cannot infect others). When an infected individual passes infection to a Susceptible individual, a corresponding susceptible agent is activated (Bobashev et al., 2007). Epidemiological analysis phase is of paramount importance in recognition of an epidemic caused by terrorism. An epidemiological investigation must occur in tandem with case definition development, once an abnormality is evident, whether it is a single or unexplained disease cluster, or mass illness event. The visual representation of a quantitative evaluation using epidemic curves will be initially useful to obtain answers to questions concerning origin, propagation, incidence, prevalence and modes of transmission. Details on unique characteristics of the BT agent can also be achieved through curve analysis. In this phase, mathematical models of disease is also essential to link the biological process of transmission and the emergent dynamics of infection at the population level. At the minimum, a team effort is significantly will dictate the success of lateral decision-making/triage management phase. Emergency managers (local and FEMA), Department of Justice (FBI), political authorities (mayor, governor), technical experts, tactical field scientists with expertise in epidemiology and infectious disease) will make up the lateral decision making at the local level. At the hospital level, the triage officer will be composed of pharmacists, infectious disease specialists, administrators, pulmonary care technicians and auxiliary hospital personnel.
  3. Gross Violations of the Biological and Toxin Weapons Convention (BTWC):  The 1972 Biological and Toxin Weapons Convention was formed as a result of the end of the Cold War and the first Gulf War. The gross violations of BTWC is of great concern, and had been violated for the two decades following its entry into force that led to a six year international negotiations of a compliance protocol. A number of BTWC signatories are suspected to be involved in illegal activities. President George W. Bush withdrew from these negotiations in 2001 and has declared BWC to be “inherently unverifiable”.

Dramatic Advances in Biotechnology: In 1999, the biotechnology industry in the United States doubled in size, and its globalization is being driven not only by national decisions, but also by biotechnology firms. Growing apace in the knowledge and techniques in genomics, and genetics, giving scientists the ability to locate specific genes and identify their associated genes through genetic sequencing. Bio-informatics have supported the collection and dissemination of vast quantities of data, making it easier for knowledge and technology to be misused. Growing international subcontracting, transfer of knowledge to other entity could be the first probable breach enabling terrorists to develop new forms of bioengineered weapons to augment or replace existing capabilities. Detection, mitigation and remediation from exposure to agent strains could become much more difficult if they were modified to hide telltale signatures (Rappert, 2003). In the mid-1990, Russian scientists made detection tests for anthrax ineffective through genetic engineering techniques.  The impact of biotechnology on the threat of biological warfare is graphically represented in figure 1 (Petro et al., 2003, p. 163). The graphical representation of figure 1 depicts the timeline of relative threat level presented by traditional, genetically modified traditional and advanced biological agents. Dramatic advances in biotechnology will lead to a new class of advanced biological warfare (ABW) agents developed to bring forth novel effects. Biological research will bring new agents and delivery system that will provide a multiplicity of new options, expanding the paradigm of biological warfare.The implications of these four trends led to a re-conceptualization of the bio-terrorist threat away from misplaced analogies to nuclear or chemical weapons, and towards placing the threat in the context of the public health measures needed to combat disease (Chyba & Greninger, 2004).

Contributing Factors

The individual, interpersonal and environmental contributing factors that open the probability of biological and chemical threats could be trace to the lack of verification measures and the widespread availability of the general materials, equipment and biological knowledge necessary for weapons development. BTWC has no criteria to differentiate offensive from defensive development, production or stockpiling activities. Unless otherwise justifiable, all biological agents and toxins are banned, but it has long been a cause of concern of reported violation of BTWC by some member State Parties and countries. It has been a topic of much debate about the feasibility that individuals, sub-state groups, terrorists the capacity to develop bio-weapons. A genetically engineered infectious agent could have a probable effective means of systematic dispersal by trafficking an individual physically carrying a deadly agent or infected with deadlier viral strain that rapidly spread to a target population. With existing knowledge and technology, studies shows that terrorists or anyone can make biological weapons without obtaining a natural virus. American scientists Jeronimo Cello and colleagues at the State University of New York at Stony Brook synthesized a polio genome from scratch by stringing together commercially available strands ofDNA purchased over the Internet in accordance with the map of the RNA polio genome, which is published onthe Internet (Selgelid, 2007). Through gene splicing, the survivability of a bacterium across a range of environmental conditions could be improved. The ease to conceal legitimate biological research further energize other countries, and terrorist organizations to continue to pursue biological warfare.


The theoretical framework of emerging biotechnologies will lead to the development of new biological agents. Technologies developed across multiple disciplines in the biological sciences will have a profound global impact and concurrently have the potential to revolutionize biological warfare by facilitating an entirely new class of fully engineered agents referred to as advanced biological warfare (ABW) agents (Petro et al., 2003). The Biological Weapons and Toxins Convention (BWTC) have done little to prevent foreign bio-weapon programs. Compounded by the possibility of terrorist organizations’ intention or capability to acquire bio-weapons—bioterror threat represents a significant challenge to our leaders, and agencies responsible for directing biodefense efforts. Prevention will be dependent upon counter proliferation, environmental detection, and medical countermeasures. The aim of the creation of a national biodefense strategy is to focus largely on addressing existing threats posed by a select group of naturally occurring pathogens and toxins. Petro et al. noted that agents traditionally associated with biological warfare likely will remain the predominant threat over the next 10 years. The implications of current and emerging biotechnologies on development of new biological agents should be considered and factored into any long term biodefense strategy (p. 161).

Public Health Policy Implications

 Dual-use research that can be used for both good and harmful purposes is plagued with ethical challenge and debates on the needs of relevant policy developments. The growing debate on “the dual-use dilemma” in life sciences research stressed the essential need of safety and security guidelines on biosecurity. Life sciences community and the security community share the common goal of protecting our Nation’s human, animal, plant and environmental health. These communities recognize this inherent tension between the need to protect the conduct of biological research from unnecessary restrictions, and mitigate potential threats to the greatest extent possible. I believe that a comprehensive review of U.S. terrorism policy, organizational structure, and preparedness are essential to respond with the shifting nature of biological research impacting existing offensive capability, and scientific advances that will be more available and applicable over the next 5 to 25 years. The National Research Council (NRC) recommended the increased education of the scientific community about the dual-use dilemma. The recommendations include that the significance of the role of institutional biosafety committees. The expanded role of institutional biosafety committees must include the function to review of research proposals for dual-use risks including environmental dangers. NRC recommendations also include self-governance of the scientific community as opposed to governmental censorship in matters related to publication of dual-use research findings.  The National Science Advisory Board for Biosecurity (NSABB) was established to provide guidance to the government regarding the oversight of dual-use research. The public health community, law and policymakers, and society in general need to address a series of critical choices (Hodge Jr., 2002). The critical and most important choice are not to decide where the power to protect the health public lies or which level of government has the primary power to act, but to decide the center of leadership during a bioterrorism event.


A HYBRID EPIDEMIC MODEL: COMBINING THE ADVANTAGES OF AGENT … (n.d.). Retrieved from http://www.informs-sim.org/wsc07papers/186.pdf

Aken, J. & Hammond, E. (2003). Genetic engineering and biological weapons. EMBO Reports, 4, 557-571.

Barboza, P., Vaillant, L., Le Strat, Y., Hartley, D. M., Nelson, N. P., Mawudeku, A., … & Astagneau, P. (2014). Factors Influencing Performance of Internet-Based Biosurveillance Systems Used in Epidemic Intelligence for Early Detection of Infectious Diseases Outbreaks. PloS one9(3), e90536.

Beyond the Border Buildup Security and Migrants along the U.S … (n.d.). Retrieved from http://www.scribd.com/doc/91303464/Beyond-the-Border-Buildup-Security-and-Migrants-Along-the-U-S-Mexico-Border

Biosecurity | The White House. (n.d.). Retrieved from http://www.whitehouse.gov/administration/eop/ostp/nstc/biosecurity

Burkle Jr., F. (2002). Mass Casualty Management of a large-Scale Bioterrorist Event: An Epidemiological Approach that Shapes Triage Decisions. Retrieved from http://ehs.umbc.edu/distance/632Readings/MassCasualtyMgmt.PDF

Chyba, C. & Greninger, A. (2004). Biotechnology and Bioterrorism: An Unprecedented World. Survival. 46 (2), 143-162. The International Institute of Strategic Studies.

Committee on Research and Development for improving Civilian Medical Response to Chemical and Biological Terrorism Incidents. (1999). chemical and biological terrorism: Research and development to improve civilian medical response, pp. 97-109.  Washington, DC: National Academy Press.

Corley, C. D., Lancaster, M. J., Brigantic, R. T., Chung, J. S., Walters, R. A., Arthur, R. R., … & Thomas, C. S. (2012). Assessing the continuum of event-based biosurveillance through an operational lens. Biosecurity and bioterrorism: biodefense strategy, practice, and science10(1), 131-141.

Countering the Changing Threat of International Terrorism. (n.d.). Retrieved from http://www.fas.org/irp/threat/commission.html

D.C. Legislator Moves To Ban Guns Made With 3D Printers … (n.d.). Retrieved from http://wamu.org/news/13/05/07/dc_legislator_moves_to_ban_guns_made_with_3d_printers

Fraser, C. & Dando, M. (2001). Genomics and future biological weapons: the need for preventive action by the biomedical community. Nature Genetics, 29, pp. 253-6.

Fraser, C. (2004). A genomics-based approach to biodefense preparedness. Nature Reviews: Genomics, 5, pp 23-33.

Genomics and future biological weapons: the need for … (n.d.). Retrieved from http://www.nature.com/ng/journal/v29/n3/abs/ng763.html

Garfinkel, M., Endy, D., Epstein, G. & Friedman, R. (2007). Synthetic genomics: options for governance. Biosecurity and Bioterrorism: Biodefense Strategy, Practice, and Science, 5 (4), pp. 359-62.

Grassly, N. & Fraser, C. (2008). Mathematical models of infectious disease transmission. Nature Reviews Microbiology. doi: 10.1038/nrmicro1845.

Hodge Jr., J. (2002). Bioterrorism Law and Policy: Critical Choices in Public Health. The Journal of Law, Medicine & Ethics, 30, pp. 254-262.

Hopper, E. (2004). Underidentification of Human Trafficking Victims in the United States. Journal of Social Work Research and Evaluation, 5 (2), pp. 125-136.

Institute for Security Technology Studies. (2001). emerging technologies: Recommendations for counter-terrorism, pp. 1-451. Dartmouth College: Hanover, New Hampshire.

Labilles, U. (2013). Major Trends in Genomic Research and Development: Emerging Challenge to Public Health and Security (Unpublished, PUBH 8115-1 Final Assignment, Social Behavioral and Cultural Fact in Public Health Spring Qtr.) Walden University, Minneapolis.

Labilles, U. (2013b). A glinting challenge to public health and global security: Genomics and Bioterrorism(Unpublished, PUBH 8165-2 Week 9 Discussion, Environmental Health Spring Qtr.) Walden University, Minneapolis.

Labilles, U. (2013c). Zoonotic Transmission Dynamics of Hantavirus. (Unpublished, PUBH 8165-2 Week 8 Discussion, Environmental Health Spring Qtr.) Walden University, Minneapolis.

Myler, P., Stacy, R., Stewart, L., Staker, B., Van Voorhis, W., Varani, G. & Buchko, G. (2009). The Seattle structural genomics center for infectious disease (SSGCID). Infectious Disorders Drug Targets, 9 (5), pp. 493-506.

Office of Transnational Issues, The Darker Bioweapons Future, Central Intelligence Agency, Washington, DC, 3 November 2003, p. 1.

Perkins, D. & Nordmann, B. (2012). Emerging Technologies: Biosecurity and Consequence Management Implications. NATO Science for Peace and Security Series A: Chemistry and Biology, pp. 25-33.

Petro, J., Plasse, T., & McNulty, J. (2003). Biotechnology: Impact on Biological Warfare and Biodefence. Biosecurity and Bioterrorism: Biodefence Strategy, Practice, and Science. 1, 161-168.

Pollack, A. (2002). Scientists Create a Live Polio Virus. New York Times Retrieved from http://www.nytimes.com/2002/07/12/science/10POLI.html?ex=102750869&ei=1&en=9c90f7f35631fbcd.

Rappert, B. (2003). Biological weapons, genetics and social analysis: emerging responses, emerging issues. New Genetics and Society. vol.22, No. 2, 170-181.

Richard, A.O. (2000). International trafficking of women to the United States: A contemporary manifestation of slavery and organized crime. Washington, DC: U.S. Government Printing Office.

Rosen, J. & Lucey, C. (2011). Emerging technologies: Recommendations for Counter-Terrorism. Dartmouth College: Institute for Security Technology Studies.

Selgelid, M. (2007). A tale of two studies: ethics, bioterrorism, and the censorship of science. Hastings Center Report, pp.35-43.

Selgelid, M. (2009). Governance of dual-use research: an ethical dilemma. Bull World Health Organ, 87, pp. 720-723. doi: 10.2471/BLT.08.051383

Singh, J. & Singer, P. (2002). Isolation is not the answer to bioterrorism. Nature, 420, pp. 605

Slezek, T., Kuczmarki, T., Ott, L., Torres, C., Mederos, D., Smith, J., & Gardner, S. (2003). Comparative genomics tools to bioterrorism defense. Briefing in bioinformatics, 4, 133-49.

Wheelis, M. & Dando, M. (2005). Neurobiology: A case study of the imminent militarization of biology. International Review of Red Cross, 87 (859), 553-571.

Figure 1


Parental Obesity and New Mentality: Raising the Risk of Child Obesity

Our nation’s most urgent health problem is the disparities in health care. There are stark disparities in health by gender and socioeconomic status. According to Davis et al. (2005), “the social and community environments affect health directly as well as indirectly by influencing behavior”(p. 2168). Which group do we put parents who have a distorted perception of their child’s body size? This phenomenon is most prevalent among low-income women and Hispanic mothers. But regardless of race or socioeconomic background, the obesity epidemic is eroding the general impression of what healthy looks like. What if obese is the new normal? If obese is the new normal, then it will be our failure as Public Health professionals to emphasize the importance of the role of parents and family to combat child obesity. Parents should play a crucial role in influencing children’s food habits and physical activity. Parental obesity may increase the risk of a child becoming obese. Wrotniak et al. (2004) is the first study to examine the incremental effects of parental weight change on child weight change while controlling for variables that influence child weight loss. The study stated that youth benefit the most from parents who lose the most weight in family-based behavioral treatments (Wrotniak et al., 2004, p. 342).

The prevalence of obesity is increasing in all pediatric age groups according to the Health and Nutrition Examination Survey (NHANES). Genetics, environment, metabolism, lifestyle, and eating habits are among the factors believed to play a role in the development of obesity. More than 90% of cases are idiopathic; less than 10% are associated with hormonal or genetic causes. Hirschler et al. (2008) found an association between mothers’ distorted perception of their children’s shape and eating habits and mothers’ obesity and their children’s overweight. The study provides clues for obesity prevention programs. There is a multitude of health problems that are associated with obesity. Without dealing with the new trend of maternally distorted perception of their child’s body size, health problems faced by family care physicians will continue to rise. There will be continued prevalence of obesity associated diseases such as type 2 diabetes and heart disease to hyperlipidemia, asthma, and obstructive sleep apnea. According to Friedman & Schwartz (2008), “A key concept in developing obesity-related policies is creating ‘optimal defaults’17. When there is an optimal default, the health promoting behaviors are those that come most easily, require the least effort or thought, and offer a more healthful option” (p.718).


JAMA Network | JAMA Pediatrics | Parent Weight Change as a … (n.d.). Retrieved from http://archpedi.jamanetwork.com/article.aspx?articleid=485676

Hirschler, V., Calcagno M., Clemente A., Aranda C., Gonzalez, C. (2008, July 21). Association between school children’s overweight and maternal obesity and perception of      their children’s weight status. Journal Pediatric Endocrinololgy & Metabolism. 7:641-9.

Cohen, L., Chavez, V., Chehimi, S. (2010). Achieving Health Equity and Social Justice. L. Liburd & W. Giles, Prevention is Primary (pp. 33-53). San Francisco: Jossey-            Bass.

Friedman, R., & Schwartz, M. (2008). Public Policy to Prevent Childhood Obesity, and the Role of Pediatric Endocrinologists.Journal of Pediatric Endocrinology &                    Metabolism, 21, 717-725.